

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Laboratory! [image: Build Status] [https://travis-ci.org/joealcorn/laboratory]

A Python library for carefully refactoring critical paths (and a port of Github's Scientist [https://github.com/github/scientist]).

Why?

See Github's blog post - http://githubengineering.com/scientist/

But how?

Imagine you've implemented a complex caching strategy for some objects in your database and a stale cache is simply not acceptable.
How could you test this and ensure parity with your previous implementation, under load, with production data?
Run it in production!

import laboratory

experiment = laboratory.Experiment()
with experiment.control() as c:
 c.record(get_objects_from_database())

with experiment.candidate() as c:
 c.record(get_objects_from_cache())

objects = experiment.run()

Mark the original code as the control and any other implementations as candidates. Timing information is recorded about all control
and candidate blocks, and any exceptions from the candidates will be swallowed so they don't affect availability.
Laboratory will always return the result of the control block.

Publishing results

This data is useless unless we can do something with it. Laboratory makes no assumptions about how to do this - it's entirely for you
to implement to suit your needs.
For example, timing data can be sent to graphite, and mismatches can be placed in a capped collection in redis for debugging later.

The publish method is passed a Result instance, with control and candidate data is available in Result.control and Result.observations
respectively.

Controlling comparison

Not all data is created equal. By default laboratory compares using ==, but sometimes you may need to tweak this to suit your needs.
It's easy enough - just subclass Experiment and implement the compare(control, observation) method.

class MyExperiment(Experiment):
 def compare(self, control, observation):
 return control.value['id'] == observation.value['id']

Adding context

A lot of the time there's going to be extra context around an experiment that's useful to use in publishing or comparisons.
You can set this data in a few ways.

The first is experiment-wide context, which will be set on every observation laboratory makes.

experiment = laboratory.Experiment(name='Object Cache Experiment', context={'user': user})

Observation-specific context can be updated before or as the experiment is running.

with experiment.control(name='Object DB Strategy', context={'using': 'db'}) as e:
 e.update_context({'uuid': uuid})

 e.get_context() # ==
 # {
 # 'user': <User>,
 # 'uuid': 'c08d46f1-92a6-46e5-9185-82d90dcb5af1',
 # 'using': 'db',
 # }

with experiment.candidate(name='Object Cache Strategy', context={'using': 'cache'}) as e:
 e.update_context({'uuid': uuid})

 e.get_context() # ==
 # {
 # 'user': <User>,
 # 'using': 'cache',
 # }

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

