

 Navigation

 	
 index

 	
 next |

 	Laboratory 1.0.2 documentation »

Laboratory

A library for carefully refactoring critical paths, with support for Python 2.7 & 3.3+

Laboratory is all about sure-footed refactoring achieved through experimentation. By conducting
experiments and verifying their results, not only can we see if our refactored code is
misbehaving, we have established a feedback loop to help us correct its behaviour.

[image: _images/laboratory.svg]
 [https://opensource.org/licenses/mit-license.php][image: _images/laboratory1.svg]
 [https://pypi.python.org/pypi/laboratory][image: _images/laboratory2.svg]
 [https://travis-ci.org/joealcorn/laboratory][image: https://pypi-badges.global.ssl.fastly.net/svg?package=laboratory&timeframe=monthly]
 [https://pypi.joealcorn.co.uk]
Note

These docs are a work in progress. Additional documentation can be found in the
project’s README [https://github.com/joealcorn/laboratory#laboratory]

	Index & Quickstart

	Installation

	Publishing results
	Publishing

	StatsD implementation

	API Reference
	Experiment

	Observation

	Result

	Exceptions

Quickstart

See: Installation or pip install laboratory

With Laboratory you conduct an experiment with your known-good code as the
control block and a new code branch as a candidate.

Let’s do an experiment together:

import laboratory

create an experiment
experiment = laboratory.Experiment()

set your control and candidate functions
experiment.control(authorise_control, args=(user,))
experiment.candidate(authorise_candidate, args=(user,))

conduct the experiment and return the control value
authorised = experiment.conduct()

Laboratory just:

	Executed the unproven (candidates) and the existing (control) code

	Compared the return values

	Recorded timing information about all code

	Caught (and logged) exceptions in the unproven code

	Published all of this information (see Publishing results)

For the most part that’s all there is to it. You’ll need to do some work to publish your results
in order to act on the experiment, but if you’ve got a metrics solution ready to go it should be straightforward.

If you need to control comparison [https://github.com/joealcorn/laboratory#controlling-comparison], you can do that too.

Tip

Your control and candidate functions execute in a random order to help catch ordering issues

Indices and tables

	Index

	Search Page

 Navigation

 	
 index

 	
 next |

 	Laboratory 1.0.2 documentation »

 © Copyright 2018, Joe Alcorn.
 Created using Sphinx 1.8.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laboratory 1.0.2 documentation »

Installation

Installing from PyPI [https://pypi.python.org/pypi/laboratory] is recommended.

If you’re unfamiliar with Python packaging tools (such as pip and virtualenv)
see what The Hitchhiker’s Guide to Python [http://docs.python-guide.org/en/latest/dev/virtualenvs/] has to say about them.

$ pip install laboratory

You can also install a tagged version [https://github.com/joealcorn/laboratory/releases] from Github

$ pip install https://github.com/joealcorn/laboratory/archive/v1.0.tar.gz

Or the latest development version

$ pip install git+https://github.com/joealcorn/laboratory.git

Now move on to the Quickstart

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laboratory 1.0.2 documentation »

 © Copyright 2018, Joe Alcorn.
 Created using Sphinx 1.8.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laboratory 1.0.2 documentation »

Publishing results

We saw in the Quickstart how to create and run an experiment. Now let’s see
how we can take the data gathered in that experiment and publish it to make it
useful to us.

Laboratory makes no assumptions about how to do this — it’s entirely for you to
implement to suit your needs. For example, timing data can be sent to graphite,
and mismatches could be written to disk for debugging at a later date.

Publishing

To publish, you must implement the publish() method on an Experiment.

The publish method is passed a Result instance, with control and candidate
observations available under result.control and result.candidates respectively.

	
Experiment.publish(result)

	Publish the results of an experiment.
This is called after each experiment run.
Exceptions that occur during publishing will be caught, but logged.

By default this is a no-op. See Publishing results.

	Parameters

	result (Result) – The result of an experiment run

StatsD implementation

Here’s an example implementation for statsd:

class StatsdExperiment(laboratory.Experiment):
 def publish(self, result):
 if result.match:
 statsd.incr('experiment.match')
 else:
 statsd.incr('experiment.mismatch')

 statsd.timing('experiment.control', result.control.duration)
 for obs in result.candidates:
 statsd.timing('experiment.%s' % obs.name, obs.duration)

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Laboratory 1.0.2 documentation »

 © Copyright 2018, Joe Alcorn.
 Created using Sphinx 1.8.5.

 Navigation

 	
 index

 	
 previous |

 	Laboratory 1.0.2 documentation »

API Reference

Experiment

	
class laboratory.experiment.Experiment(name='Experiment', context=None, raise_on_mismatch=False)

	Experiment base class. Handles running your control and candidate functions.
Should be subclassed to add publishing functionality.

	Variables

	
	name (string) – Experiment name

	raise_on_mismatch (bool) – Raise MismatchException when
experiment results do not match

	
classmethod decorator(candidate, *exp_args, **exp_kwargs)

	Decorate a control function in order to conduct an experiment when called.

	Parameters

	
	candidate (callable) – your candidate function

	exp_args (iterable) – positional arguments passed to Experiment

	exp_kwargs (dict) – keyword arguments passed to Experiment

Usage:

candidate_func = lambda: True

@Experiment.decorator(candidate_func)
def control_func():
 return True

	
control(control_func, args=None, kwargs=None, name='Control', context=None)

	Set the experiment’s control function. Must be set before conduct() is called.

	Parameters

	
	control_func (callable) – your control function

	args (iterable) – positional arguments to pass to your function

	kwargs (dict) – keyword arguments to pass to your function

	name (string) – a name for your observation

	context (dict) – observation-specific context

	Raises

	LaboratoryException – If attempting to set a second control case

	
candidate(cand_func, args=None, kwargs=None, name='Candidate', context=None)

	Adds a candidate function to an experiment. Can be used multiple times for
multiple candidates.

	Parameters

	
	cand_func (callable) – your control function

	args (iterable) – positional arguments to pass to your function

	kwargs (dict) – keyword arguments to pass to your function

	name (string) – a name for your observation

	context (dict) – observation-specific context

	
conduct(randomize=True)

	Run control & candidate functions and return the control’s return value.
control() must be called first.

	Parameters

	randomize (bool) – controls whether we shuffle the order
of execution between control and candidate

	Raises

	LaboratoryException – when no control case has been set

	Returns

	Control function’s return value

	
enabled()

	Enable the experiment? If false candidates will not be executed.

	Return type

	bool

	
compare(control, candidate)

	Compares two Observation instances.

	Parameters

	
	control (Observation) – The control block’s Observation

	candidate (Observation) – A candidate block’s Observation

	Raises

	MismatchException – If Experiment.raise_on_mismatch is True

	Return bool

	match?

	
publish(result)

	Publish the results of an experiment.
This is called after each experiment run.
Exceptions that occur during publishing will be caught, but logged.

By default this is a no-op. See Publishing results.

	Parameters

	result (Result) – The result of an experiment run

	
get_context()

	
	Return dict

	Experiment-wide context

Observation

	
class laboratory.observation.Observation(name, context=None)

	Result of running a single code block.

	Variables

	
	name (string) – observation name

	failure (bool) – did the function raise an exception

	exception (Exception) – exception raised, if any

	exc_info – result of sys.exc_info(), if exception raised

	value – function return value

	
duration

	How long the function took to execute

	Return type

	timedelta

	
get_context()

	Return observation-specific context

Result

	
class laboratory.result.Result(experiment, control, candidates)

	
	Variables

	
	experiment (Experiment) – The experiment instance that recorded this Result

	control (Observation) – The control observation

	candidates ([Observation]) – A list of candidate observations

	match (bool) – Whether all candidates match the control case

Exceptions

	
exception laboratory.exceptions.LaboratoryException(message, *a, **kw)

	Base class for all laboratory exceptions

	
exception laboratory.exceptions.MismatchException(message, *a, **kw)

	

 Navigation

 	
 index

 	
 previous |

 	Laboratory 1.0.2 documentation »

 © Copyright 2018, Joe Alcorn.
 Created using Sphinx 1.8.5.

 Navigation

 	
 index

 	Laboratory 1.0.2 documentation »

Index

 C
 | D
 | E
 | G
 | L
 | M
 | O
 | P
 | R

C

 	
 	candidate() (laboratory.experiment.Experiment method)

 	compare() (laboratory.experiment.Experiment method)

 	
 	conduct() (laboratory.experiment.Experiment method)

 	control() (laboratory.experiment.Experiment method)

D

 	
 	decorator() (laboratory.experiment.Experiment class method)

 	
 	duration (laboratory.observation.Observation attribute)

E

 	
 	enabled() (laboratory.experiment.Experiment method)

 	
 	Experiment (class in laboratory.experiment)

G

 	
 	get_context() (laboratory.experiment.Experiment method)

 	(laboratory.observation.Observation method)

L

 	
 	laboratory.exceptions (module)

 	
 	LaboratoryException

M

 	
 	MismatchException

O

 	
 	Observation (class in laboratory.observation)

P

 	
 	publish() (laboratory.experiment.Experiment method)

R

 	
 	Result (class in laboratory.result)

 Navigation

 	
 index

 	Laboratory 1.0.2 documentation »

 © Copyright 2018, Joe Alcorn.
 Created using Sphinx 1.8.5.

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Laboratory

 		
 Installation

 		
 Publishing results

 		
 Publishing

 		
 StatsD implementation

 		
 API Reference

 		
 Experiment

 		
 Observation

 		
 Result

 		
 Exceptions

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

